
Advanced Topics on Privacy-Enhancing

Technologies

CS-523

Anonymous Authentication Exercises - Solutions

1 Zero-knowledge color-blindness

Alice has two pens. They are identical, except that one pen is red and the
other blue. Bob is colorblind, so to him the pens look the same. Alice wants
to convince Bob that she can distinguish these pens, without revealing to Bob
which pen is red and which is blue. To this end, Alice and Bob run the following
protocol:

1. (commitment) Alice shuffles the pens and gives them, in a specific order,
to Bob. One pen for each hand.

2. (challenge) Bob hides the pens from Alice’s view and either (a) swaps the
pens, or (b) keeps each pen in the same hand. Each with probability 1

2 .
Bob shows the pens to Alice again.

3. (response) Alice tells Bob whether he swaps the pens or not. Bob rejects
if Alice’s answer is wrong and accepts otherwise.

Prove that this protocol is complete, sound, and zero-knowledge. What is the
soundness error?

Solution. Let’s argue for completeness. We must show that an honest prover
(e.g., a prover that can distinguish the pens) can convince an honest verifier.
Since Alice can distinguish the pens, she will always be able to tell whether Bob
switched the pens. Therefore, she will always provide the correct answer in step
3. Therefore Bob is always convinced.

To show that the protocol is sound, we must argue that a cheating prover
(e.g., a prover that cannot distinguish the pens) cannot convince Bob, except
with a small probability. Let’s look at a single round. If Alice cannot distinguish
the pens, she cannot say whether Bob swaps the pens or not. So Bob will reject
with probability 1

2 . We can reduce this error by repeating the protocol n times.
The probability that Bob will not reject after n rounds is therefore: 1

2n .

1



Let’s prove zero-knowledge. In this case, a transcript consists of a commit-
ment, followed by a challenge and a response. We can easily compute all valid
traces:

• commitment: br, challenge: br, response: same

• commitment: br, challenge: rb, response: swapped

• commitment: rb, challenge: rb, response: same

• commitment: rb, challenge: br, response: swapped

clearly these are indistinguishable from interacting with any verifier.

2 Proving knowledge of a Pedersen commitment

Let G be a cyclic group of prime order q, generated by g. Let h be another
random generator of G.

1. Construct the Sigma protocol for proving knowledge of a Pedersen com-
mitment com = gxhr to the value x ∈ Zp. What are the prover’s secrets?
What are the public values that both the prover and verifier know?

2. Prove completeness, special-soundness and honest-verifier zero-knowledge.

3. Apply the Fiat-Shamir heuristic to your protocol to obtain a non-interactive
version.

Solution. The protocol would run as follows:

Common input: group (G, g, q), h, com

Prover Verifier
Input: x, r ∈ Zq

rx ∈R Zq

rr ∈R Zq

R = grxhrr
R

c c ∈R Zq

sx = rx − c · x (mod q)
sr = rr − c · r (mod q)

sx, sr Verify R = comcgsxhsr

For completeness we must show that an honest verifier accepts interactions
with an honest prover. Since the prover is honest, we know it follows the protocol
and that com = gxhr. Therefore:

comcgsxhsr = gcxhcrgrx−c·xhrr−c·

= grxhrr = R,

2



and the verifier accepts.
We prove special soundness. Let (R, c, sx, sr) and (R, c′, s′x, s

′
r) be two ac-

cepted traces. Therefore:

comcgsxhsr = comc′gs
′
xhs

′
r

Reordering, we find that:

com = g
s′x−sx

c−c′ h
s′r−sr

c−c′

Therefore, we recovered a solution x =
s′x−sx
c−c′ and r =

s′r−sr
c−c′ .

To prove the zero-knowledge property for honest verifiers, we must simulate
traces. In this case, traces take the form (R, c, sx, sr). Because we know the
verifier is honest, we can assume that c is drawn randomly from Zq. We can
therefore construct a trace as follows. Pick sx, sr, c ∈R Zq and then compute
R = comcgsxhsr . By construction this trace would have been accepted by the
verifier. Furthermore, the distributions of the other values are also correct.
Notice that in a true execution, rx, rr are drawn uniformly at random from
Zq, therefore sx and sr are also uniform in Zq, as they are in our simulation.
Finally, c is drawn uniformly by honest verifiers. So this simulated trace is
indistinguishble from a real trace.

To apply the Fiat-Shamir heuristic, we compute the challenge c by hashing
all the public values as well as the prover’s commitment R and an optional
message m:

c = H(g ‖ h ‖ com ‖ R ‖ m),

where H : {0, 1}∗ → Zq maps strings to Zq. Traditionally, we do not include a
description of the group G.

3 Domain-specific pseudonyms

Consider a credential scheme with a single attribute – the users private key x
– that is constructed using blind signatures. In this exercise, a credential then
takes the form of a signatures σ on a commitments C = gxhr where x is the
user’s private key.

In this exercise we will work with domain specific pseudonyms to ensure that
users will always derive the same pseudonym for the same service provider (but
pseudonyms between service providers are unlinkable). The pseudonym nym for
a service provider at domain domain is computed as:

nym = H(domain)x

where H : {0, 1}∗ → G maps strings to group elements.
Suppose a user wants to use her signature σ to convince a service provider

that nym computed as before is her pseudonym. What protocol do the user and
the service provider run? If you need to use a zero-knowledge proof, give both
the high-level description, and the low level details.

3



Solution. First, the user computes nym = H(domain)x and sends nym, σ and
C to the service provider (SP). The verifier checks that σ is a valid signature
on C.

Next, the user and the SP engage in the following zero-knowledge proof to
convince the SP that the pseudonym nym has been constructed correctly:

ZK{(x, r) : C = gxhr ∧ nym = H(domain)x}.

In more detail, this protocol runs as follows:

Common input: group (G, g, q), h, domain, C, nym

Prover Verifier
Input: x, r ∈ Zq

rx ∈R Zq

rr ∈R Zq

RC = grxhrr

Rnym = H(domain)rx
RC , Rnym

c c ∈R Zq

sx = rx − c · x (mod q)
sr = rr − c · r (mod q)

sx, sr Verify RC = Ccgsxhsr

Verify Rnym = nymcH(domain)sx

4 What if verifiers are dishonest

The sigma protocols we constructed in the previous questions assume that the
verifier is honest. What goes wrong if the verifier in question 2 is not honest.
(Think about how you would construct a trace that cannot be easily simulated.)
Could you extend the protocol to make it zero-knowledge even against malicious
verifiers?

Solution. All the verifier would have to do is apply the Fiat-Shamir heuristic
and compute the challenge based on the prover’s commitment. The resulting
traces cannot be simulated!

The problem with the Sigma protocol is that the verifier can pick the chal-
lenge after the prover has revealed the commitment. However, we can ensure
that the verifier picks his challenge before seeing the prover’s commitment by
asking the verifier to commit to its challenge first. Next the prover sends her
own commitment. Finally, the verifier reveals the challenge (and shows that it
is the challenge that he committed to before). We can prove that this approach
is fully zero-knowledge.

4


